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It is well known that in the case of magnetic field termination at the end of the electrode zone the current
crossflow in the longitudinal section of the channel reduces the value of the power and leads to reduction of the
generator efficiency [1,2]. In order to exclude the end losses, it has been suggested [3,4] that the magnetic field be
extended beyond the electrode zone or that nonconducting barriers be located at the entrance to and exit from the
electrode zone. If the magnetic field is extended beyond the electrode zone, the power increase exceeds the
dissipation increase and the generator efficiency reaches its maximum value when the magnetic field is extended to
infinity.

If we examine three-dimensional problems, the closed transverse currents increase significantly the value of the
Joule dissipation even for very small boundary layers [5].

In the following we study the three-dimensional electric field distribution for stationary flow of an isotropically
conducting fluid in a MHD channel with semi-infinite electrodes and calculate the Joule dissipation, power, and
efficiency of the generator,

1. Consider a rectangular channel (|x| < =, |y| < 8, |z| < @) whose walls are everywhere nonconducting (Fig. 1)
except for the two semi-infinite electrodes x >0, y =+ 4.

Through the channel flows an electroconductive fluid with constant conductivity o and given velocity V(x,y,2z). The
channel is located in the external magnetic field B = B(x,v, z), which is negligibly distorted by the induced currents.

Then, following [6], the current and potential distributions can be found from the equation
Ap = Brot V (1.1)
with the following limiting conditions
¢==%¢ for y==138 >0 (1.2)

fv—’:"(’%'!‘f:t):() for y=13, »<0

je=o(— - +e,)=0for s=ka, I21<o 1.3)
V«B VB
fi'(.t, Z) = ——XE—' Ll=i-8 , gi (xi y) = >c< fe= e
B0, -g{-—»o, 9p—0 forr—o— o

B—Bo(y,2), VoV, 2)ee —2—0 for zm 4o

We assume that the velocity is 2 symmetric function with respect y and z and that B.(x, z) is a symmetric
function with respect to z.

We introduce the auxiliary potential ¥ = ¢ — ¢,, where ¢(x, y, z) is the unknown solution of the problem and
@4(x, ¥, z) is the solution of (1.1) with boundary conditions (1.3)—(1.4) for |x| < =, i.e., the solution of the analogous
problem for the channel with everywhere nonconducting walls.

Then we obtain the Laplace equation for

AV =0 (1.5)

and the boundary conditions

521



Y=kpe(r, 16,5 =(FQ)— R, £8,2) =8 2>0)
o3y =0 for y+8, a<0; 0P/02=0 for y=438, |z|<oo
Y0 for —»—o0, OV/z—0 for z— 4

The problem solution for § = ¢ — ¢, is sought in the form of the expansion

k2

b=+ Sy (e, y)oos T-

k=1

o= 22 3 (s, ) cos T2

k=1

The potential ¢4(x, y, 2) is [6]

~

n(n—s)
8

Setting y == 6 and comparing coefficients in (1.10) and (1.11), we obtain

P, o I
o= (5% 3 e cos T
k=1
1 [oe] n o0 oc n k .
= (00— 3 (09— 3 3 (1) g,c08 )
n=1 k==1 n==1
Hence
1 & n & "
Peo = — e + = D (—1)",,, Y=+ D (=19,
n=1 Te==]l

(1.6)
a€.mn
(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

Thus, if the velocity profile and the magnetic field are given, the results of [6] define the coefficients of the
expansion of the function ¢4(x, y), while the coefficients of the expansion g, Pek are calculated from (1.13).

Fig. 1

We assume that the applied magnetic field is approximated by the step function

B = {0, 0, B, (z)}, B.=0(z<~0), B:=B(z>~—1)

The velocity profile is specified so that it satisfies the no-slip conditions at the walls:

v = {Vx (yv Z)1 01 0}’ V.x (?/, Z) = Vo 2 Xn (Z) €os r.y

A=l

8
(@) =52, Vo= V. Deosrydy, tu(ta)=0
-8
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Then

gy = A28 (OXP [— ok (2.4 )] — 1) = -ty (05 [ b (& + )] —2)
A= ,V_‘:sli'l , Xar =1 S xn(z)cosf‘:—z dz, pnf=r2+M2, k= “—:—
—c

Substituting ¢p) into (1.13), we obtain

Peo = [— @t = D (— 1)t (exp [— i ( + 1)] — 2)]

n=1

Ver = 5 3 (— 1)t (X [P (2 + )] — 2) (1.14)

YL

The functions ¥ (x, y) must be found from the following system of equations, obtained after substituting ¥ in the
form (1.9) into the Laplace equation (1.5) and the conditions (1.6)—(1.8):

Ay — Xy =0 (1.15)
Y =LY (=48 >0 —51% =0 (y=46 2<0) (1.16)
Yy —>0, z—— 00, oy /0z~>0, z— 1 00 (1.17)

2. Applying the two-sided Fourier transformation

1 ¢ .
()] —_— i
i (% ¥) s jm i (2, y) e de

to (1.15), we obtain

4D,

—@T—T’;\F(Dk:(), n2=M-+a (2.1)

k
Boundary condition (1.16) imposes on the function ®y(a, y) the requirement that it be odd with respect toy. The
solution of (2.1) satisfying this requirement takes the form

Dy y) =Aa(@shy,y (2.2)

If we introduce the functions

O (o, y) by (2, y)ei*= dz

(Zn)'/z

Dy (2, ¥ by (2, ) = dz

(Zn)'/z

3"
§u

(d)k ] (Zn)'/z 6y

o« 0
M, o 1 9
=\ e, @0y = § S e
4]

then, using (2.2), we obtain the system
Oy (@ ) + P (@, y) =Ar{@)shy,y (2.9)
D (o, ) + Oy y) = Ap(@)ynchyry (2.4)

We set y ==+ 6 in these equations. Then <I>k(oz 8) and tI>k (o, &) are known by virtue of conditions (1.16). This
makes it possible, after excluding the unknown function Ag(a), to obtain from (2.3) and (2,4) the equation in <1> o, 6)

and ¢ (e, d):
DM (@, 8) = ys cth 8@ (2, ) + O (&, )] (2.5)

This functional equation is the Wiener-Hopf equation. In order to study this equation the function <I>f:'(oz, 6 is
defined using (1.14):
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_ A Sy ad n EXp(——}Lﬂkl)
o) = g 3 e 0

—_ %e__{_ (-~ V' (k=0)

dk — - n==1
S=Wawx k>
h=1
We factorize the function K(a) = v 6cthyy6:
© [T 5 T aRe .
s V1 406,%,28° F b, Sic 1 1
T = —_—e—— = —— b T e—————
K@) 7.11;[1 VIF 0, 8,702 T ambia ' m = Tm o Im T Tm =)

Here Kf;(oz) and Kk(o) are functions of the complex parameter o, regular, respectively, .in the half-planes

T a5t
a>——-171k=——l—i;%—l——, o < Ty

After these transformations (2.5) takes the form

8O 8) A D awm ag oot
K, (a) —(2n)‘/’ gl( 1) ankﬂk (”J‘nk) (a- +i”_n-k>

A Kyt (0) - = Kyt (o) Dy (0
I ‘,-21,:)'1/2 k () o l 4 (0{,) k (OC, ) (2.6)
A o _A\n C_pnk + EE
+ A n§1( 1) ankm[Kk (@) = K" (ipnr)]
A

— G 2 K, (@) — Ky (0)]

Let us study the region of regularity of this equation., We first examine the functions <I>§(oz, 8) and (e, 8). By
virtue of condition (1.17) the function d — 0 as x — — ©; therefore we assume

l i | < ClenskaC for z2—»—

(y = const, By = const == 0)
As an example, let

¢, n2K?
B == I/'IF +—

Then, in accordance with [8], the function @i (e, y) will be regular for T < u;k, where 7 = Ima. Since dzpk/dxﬂo
as x — «, then &y — const for any fixed y as x — «,

Consequently we have that | & < C, as x — + =, i.e., the function ‘Inl-:(oz, y) is regular for 7 > 0. Thus the region
of regularity of the function <I>k(oz, y) will be the strip 0< 1< uﬂ{f*

H [B,(r) ‘ ]

g y PR (p(:x"z
an) DIEY[} HW T
Fig. 2

We denote the right-hand and left-hand sides of (2.6) by L;{(o) and I,(e), respectively. The functions appearing in
Ii(a) are such that Ij(@) is regular for Ty < pyi, while L(o) consists of functions which are regular for Ty> 0.
Consequently, the region of regularity of the Wiener-Hopf equation is the strip 0 < Ty <py. If we continue
analytically the regular branches L{(a) and I (o) into the entire plane, we obtain the function I{e) = (o) = I,(a), which
is regular over the entire region.

*Inequalities (2.7) and (2.8) are obtained as a corollary of rather strong assumptions about the behavior of ;. as
X ~=+ 0. These assumptions are later confirmed by the constructed solution.
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To estimate the growth of the functions I () and I(e) as @ —© and & — ~ ©, we assume that the following
conditions are met:

%‘-Z—(z, &)~z forz—+0, Py(z,8)—const for z——0
Then, following [8], we can state that the estimates
O (@, §) ~|apr, |oa]-—oco; O (@ 8 ~la}™? Jal—oo
are valid, which together with the known estimates
K @ ~|a|h Jo|—>owo;  Kpl@)~]al% |a|->o
makes it possible to clarify the behavior of the functions I (@) and L(@) as |@| — = in the corresponding half-planes.

We find that

[ 11 (@) | < Csla|™ for|a|— oo, T<pyn
I (@) | << Cia™ for a — oo, 75 << 0

iif

Then, on the basis of the generalized Liouville theorem, I{a) = 0 over the entire a-plane. Equating I, (¢) and
L{(a) to zero, we have two equations for determining the two unknown functions @ﬁ'(a, ) and @1 (@, 8). It suffices to
know one of these functions in order to find A(@) from (2.3) and (2.4) and then obtain

r sy

A
@y (2, y) = Ay (a)shry = W@L-“T

hed @y @Xp (—Rpl) | Lo\ K t(a)sh 1y
. nk nk _ BN k
-+ ;1( o e, LKk (i) | 5 B8(x,y) = o FET
Application of the inverse Fourier transformation to @y yields
1 ick—{-oo
V(e y) = G § Pelny)eieda (2.7)
icy—00

The integration path lies in the strip of regularity of the function & («a, y), i.e., 0 < ¢k < 4jk. Substituting
Py (e, y) into (2.7), we find

ick-}—oo

Vi (2, Y) = — %Gk S Beiex da
—ig—®
4 S ke Be—i%% g, ( )
A N (Y Ky (itt) € S e dy 2.8
5 n§1( ) @ K (iPng) € ne (CETN)
k

The integrals in (2.8) are calculated with the aid of residue theory separately for x < 0 and for x > 0. Knowing the
coefficients of the expansion ¢ (%, y), we can use (1.9) to find ¥(x, y, z) in both regions. Since the function oolx, v, z)
calculated using the formulas of [6] has different analytic representations in the regions x >—1 and x < — 1, the
unknown potential ¢ = ¥ + ¢, has different representations in the three regions (see Fig. 2):

oo

9l (z,y,2)=4 {Z —;— [(—1)*Bos — os €XP Josl] €XP o5 TSID 7Y
s=1
+ 3 31— )i — @y e3P rl1exp il sinry cos hyz)
F=1 s=1
zE[— o0, — 1] (2.9)
9z, y,2)=4 {2 —;~ [(— 1)°Bos XD Pros -+~ @os (2 — exXp[Pos (= -+ D)])] sin sy
s=1
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[= =B

+ 2 2 [('—' 1)5 bks exp Poges + Qs (2 — exp [—' Prs (z—)—l)])]:sm Ty cos ka}

R==1 s==1
z=[—1,0] (2.10)

ot . .
Pz y,5)=A4 {ho% 4+ 3 = [(— 1)eosexp (— vosz) sin py
s==1

. - 13 !k
— 28q5sinry] + 2 [ Tkd c}]; wka sh k%)
k=1

+ Z ((— 1)ep exp (— vix) sin py — 2a,,sin rsy)l c0s Mz

s==1

ze=10, o] (2.11)
In (2.9)—(2.11) we have introduced the notations
s — Y, stk reXpsd oy
ps:—%s—’ s ﬂ.(*ﬁ 2)’ Ay = 0 G = 25}111:} T P

vk32 = ps2 + }"k27 p‘ks2 = 7'32 + }“kz
. - n_ o . [ . .
by, = [Gk + 3} (— 1) e, exp(— Hknl)m R (lHkn)]R(lHks)

n=1

re= [Ke(©) 0t 3} (—1) 010 exp(— Pnd) 55— R ()] S (— iv2)

n==1
_ Kyt (@) -t -
R(a)= N CTyal S (o) = X }LT:OKF(“) (o — &)
3. The current density, Joule dissipation, and power in the channel are calculated from the formulas
, B , F B ,
]x':—"c%’ ]y:’_c<'%+v_c>1 ]z':_‘d%;‘pz“ (3'1)
o a B "
0= {{ Laaya=0+ 0+ 0 (3.2)
—00 —Q —8§
N = 29,1 (8) (3.3)

where I(6) is the total current flowing through the electrodes into the external load,

AN K=0&5

| D=
0.6

o012 / |
/7ar
1

=

——

S
Q{N

2 & 4 5
Fig. 3
The magnitudes of the currents and dissipation were calculated separately in each of three zones: in the pre-
electrode zone without the magnetic field [—w, =1}, in the pre~electrode zone in the presence of the magnetic field
[-Z,0], and in the electrode zone in the presence of the magnetic field [0, «]. The Joule dissipation is denoted in these
zones by the symbols Qi, Q*, Q% respectively. In zone 1 (Fig. 2) dissipation is caused only by current crossflow from
zone 2 and is defined by the formula
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o0

Q' = cadA? [2 % (tos (bes® exp (— Zuosl) — 255b0s €Xp (— Wosl) - @os?)
s==1 .
© o

+ le Z Bie” (Brs® €XP (— 2Mpsl) — 2ay,by,; exp (— pel) +- ﬂka’)]

k=1 s=1 .

In zone 2 dissipation is caused by the longitudinal currents (the two-dimensional crossflow pattern of these
currents is presented in [1]), and also by the closed transverse currents, which are analogous to the currents in the
Hartmann problem. For Q* we have the formula

Q2 = 0ad4*{3 % (exp (— 2ue) — 1) Mos (e3P (— posd) — 1) + Bodl]

$=1

2 3 (6w (exp (— 2und) = 1)+ e (exp (— ad) — 1) + Lull}
Here
o = (4 az® — bksz)” ks
Nis = 2 [Qk2aks — 40+ (— 1 ;1:: (Qps + bk,)]
Chs = Py + 4 ? a4 4 (—1)71 Qpap, my,

The expression for ajg, brg, kg, r's are written out above, and myr, Qk equal, respectively,
ks Pks kf

a .
S iy k=0
My, = ;rg— S VB, cos—“—}z— dz, Q—:{ilz E>1
—a
From (3.5) follows
Q20 as -0, Q*>o00 as l—oo

Finally, in zone 3 dissipation is also caused by the longitudinal and transverse currents, but here in contrast
with zone 2 part of the transverse currents makes a contribution to the useful power. As a result of the transverse
currents the dissipation Q® is infinitely large. Therefore Q° was calculated for the fixed section of the chammel with
electrodes of length L:

(o]
0= Azasc{ "L 13} P,cos* (1 — exp (— 2visL))
s=1

x O 4 9, 282 ] .
+ 3 (o + 3 ) 1t 3 vt (1 — oxp(— 20D
k=1 s=1 4 + k8 s=1
The notationg in the expression for Q® are the same as in (2.12)~(2.14). To calculate the power we resort to
computation of the total current I(6) using the formula
o a
1) =" § 1,z dz
¢ —-a

in which the upper integration limit is replaced by L, thereby assuming that the electrodes have finite length. The
potential at the electrodes can be expressed in terms of the load coefficient k:
Pe = kV<u> B6

where V{5 is the channel section-average velocity, and then formula (3.3) for the power is written as

N =25t (V¢ B)? 8% —S—[_ a ; A % + 23‘52 Z‘, cos (1 — exp (— VUSL)ﬂ
s=1

4, The study of the values of the power, Joule dissipation, and efficiency of the generator is made under the
assumption that edge effects show up only upon entry into the magnetice field and into the electrode zone and also that
the electrodynamic parameters are practically unifromly distributed along the channel length. Then the power N and
Joule dissipation Q can be considered as the sums of two terms: the first is the value of the power or dissipation which
appears as a result of the edge effects owing to the displacement of the magnetic field beyond the electrode zone; the
second term is the value of the power or dissipation which is directly proportional to the electrode length L (here the
value of the power coincides with that calculated using one-dimensional theory). In the expressions for the power and
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dissipation, assuming L/6 > 1, we can neglect the exponentially decreasing (as L — =) terms, i.e., terms reflecting
the fact of current nonuniformities at the entrance to the electrode zone, such as the formation of closed loops in the
longitudinal sections of the channel and curvature of the streamlines as they flow around these loops. Estimating the
length L, for which we can neglect the terms containing 1/6 in the exponent, we establish the limiting electrode
length L beyond which we can consider the current and potential distributions constant along the channel, and the power
and dissipation can be calculated using two-dimensional theory.

2 g l/

k:/”/l’{/kl/l “k=05]

’ 7
a

e

3 5
Fig. 4

To construct examples of the behavior of the generator power, Joule dissipation, and efficiency we specified a
simple velocity profile

.
V="V, (\1 -+ cos ;:) cos 7;1-

satisfying the no-slip condition at the channel walls and corresponding to boundary layers of considerable thickness
(obviously the role of the transverse currents is overestimated in this case).

02 7

 — d=02
— —
o1 —~ ~——. = ﬂ‘
tza

. { L

1| [
0 1 E 5

Fig. 5

In this case the power was calculated by means of the formula

Efl—k L 1—1:
N =2m(V g, B30 [ L d=hn 2

P(ZP —1)

1 Il P (A—8 L

— 1 —_ —p.

— XD p - 2 exp
o5 % o o—1F e (2p ~1) 6
s [+
A o P — aipL P— m(m—p—") 4.1)
T A G TS L ,El =T} (m—p) (

The formula for calculating the Joule dissipation is not presented here because of the length of the expressions,
but the Joule dissipation can be represented as a function of the parameters 1/5, L/8, 6/a and the loading coefficient
k in the form

Q=(VyyBFo6* {2 la; () 41 (s;, B)] exp —
j=1
—n V@025 v

+ [bj )+ Oj (55 d)] exp )
L 1 2
+ICH W+ O 5 + [1 - m?ro—ﬁ)] T} .2
0j=1 X
_® _ —npw;L _li o _(l7=3
d=—, 3 m; exXp N v;={l =4, p= R
a 1;1 8 J 2j=3 {21—:1,2

The coefficients Sy & (j=1,2,3) will be functions of the infinite sumsg sy, which contain in the general terms the
infinite products mpj and the parameter L/5 in the exponent. The terms in (4.2) which contain in the exponent only the
parameter 1/6 are due to the longitudinal currents flowing outside the electrode zone, i.e, the longitudinal edge effect;
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those terms which contain in the exponent both /6 and L/é correspond to the longitudinal closed and nonuniform
currents at the boundary of the electrode zone. The two terms which are linear in L/6 and I/6 are, respectively, the
part of the dissipation owing to currents which are uniform across the section in the channel electrode zone and the
part of the dissipation owing to the closed transverse currents, i.e., the transverse edge effect.

In (4.1) the last two terms can be neglected for L/6 =4, i.e., if the electrode length exceeds the channel height by
a factor of two.

We denote the dimensionless parameters I/5 and L/6 by the letters g and h, respectively; then the expression for
the power, reduced to the dimensionless form N* by dividing by (V<u>B)2cr3o, is written in the form

. AN K | N°(h )
W=+

=) o
; 2 P T P
AN(g, k)= k(1—k Lt kexp— . —_—
(2, k) o ( )Elp(2p_1) kexp 5 ggl Cp—1)

Ne(hy, k) =2E(1 — k)R

The term AN(g,k) reflects only the influence of the edge effects. Calculations made on a BESM-3M computer
showed that extending the magnetic field beyond the electrode zone increases the power. We see from the variation of
AN with the magnetic field extension parameter g (Fig. 3) that AN reaches a maximum value for k = 0.5, just as
N°(h,k) does. The ratio of the power increase AN owing only to the longitudinal edge effects to the power N*,
calculated inside the electrode zone, amounts to 6.5% for the magnetic field extension parameter g = 3, loading
coefficient k = 0.5, and h = 4.

Dropping in (4.2) the sums analogous to those dropped in (4.1) for the power and reducing the expression for the
Joule dissipation to dimensionless form, we write the expression thus obtained for Q* as

Q*=AQ (g k d)+ Q°(h, K d)

The quantity AQ(g,k,d) is the dissipation increment owing to the longitudinal and transverse currents outside the
electrode zone. Neglect of the sums is valid for h = 2. A plot of AQ as a function of the field extension distance g for
various loading coefficientsk andfixed ratio d = 3 of the channel transverse dimensions is shown in Fig. 4. The
calculations made for d = 0.2, 0.5, and 2 showed that, just as for the case d = 3 shown in Fig. 4, AQ increases
linearly with respect to g as a result of the closed transverse currents, which also follows from (4.2).

The generator efficiency was calculated using the formula

N
"=NTQ

where the power N and dissipation Q were calculated using (4.1) and (4.2), in which h was taken equal to four. Figure 5
shows 1 as a function of the magnetic field extension for k = 0.5 and various d. It is obvious that the generator
efficiency may decrease with extension of the magnetic field beyond the electrode zone since dissipation increases as
a result of the transverse effect. If the power increment AN and, consequently, the entire value of N increases with
extension of the magnetic field regardless of the channel geometry, then the generator efficiency is essentially
determined by the parameter d — the ratio of the channel transverse dimensions.

The efficiency calculations showed that its value depends on the electrode zone length L, and for small L/6 the
efficiency may reach its maximum value not with termination of the magnetic field at the end of the electrode zone but
rather for some extension of the magnetic field beyond the electrode zone.

We note that as d — 0, i.e., when the channel is stretched out in width and can be considered two-dimensional,
the contribution of the transverse edge effect to the value of the dissipation diminishes.

In fact, in (4.2) the term reflecting the transverse edge effect has the form

Q‘=<1—-—~—1-——-.\—£— (Q*—0, d—0)
@I035 6 '
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If we examine Fig. 5 it is clear that for any finite d, no matter how small, beginning with some value of 1/5 the
curve begins to fall off as a result of the transverse edge effect. However, if at the same time d — 0 and /6 — = the
curve increases asymptotically, which confirms the result of two-dimensional theory stating that the efficiency
reaches its maximum value when the magnetic field is extended to infinity. The low absolute values of the efficiency
shown in Fig. 5 are explained by such factors as the velocity profile, which increases the transverse edge effects, the
gharp termination of the magnetic field rather than a smooth dropoff of the field to zero outside the electrode zone, and
the short generator length (L/6 = 4). In actual installations account for these factors results in considerably higher
efficiency.

The author wishes to thank S. A. Regirer for posing the problem and his interest in the study and V. 1L
Kovbasyuk for helpful discussions.
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